

WORKSHOP

PYTHON
22th October 2018

Senne Deproost

sdeproos@infogroep.be

@zenne

REQUIREMENTS

● Python 3.X
● CMD or BASH
● Text editor

DURING THE WORKSHOP

● Execute “>>>” statements
● QUESTION? ==> ASK
● Slides available at seminars.infogroep.be

 AFTER THE WORKSHOP...

BACKGROUND

● Dynamic language

● Object Oriented

● Runs on Python Virtual Machine

● Easy to use, reads like english

USE CASES

● Big data analysis

● Machine learning

● Prototyping

● Introduction to writing code

FIRST PROGRAM

● Open Python with command python in prompt

● After “>>>”, type:

print(“Hello World!”)
● Hit enter

TWO VERSIONS?

PYTHON 2.X
● Older version

● Small syntax differences

● Unfortunately, still widely used

print ”Hello World!”

PYTHON 3.X
● Newer version

● Syntax compatible with version 2 in
most cases

● Conversion via 2to3

● F A S T E R

print(”Hello World!”)

ANYONE STILL VERSION 2!?

GOOD JOB

VARIABLES

● >>> x = 5

● No type mention needed, can be deducted from statement

● >>> a = b = c = 42

● >>> spam = “eggs”

● >>> foo = False

TYPES

● >>> variable = 4.36

● >>> type(variable)

● 5 standard types in python

● Number(Int, Float, ...), String, List, Tuple, Dictionary

● Find all methods of type/object: dir

● >>> dir(“Testje”)

DATASTRUCTURES

● Tuple

● List

● Dictionary

● ...

TUPLE

● Immutable

● ()

● >>> a_tuple = (1, 2, 3)

● >>> a_tuple[0]

● >>> a_tuple[0] = “eggs”

● >>> a_tuple

LIST

● Mutable

● []

● >>> a_list = [1, 2, 3]

● >>> a_list[0]

● >>> a_list[0] = “eggs”

● >>> a_list

LIST

● >>> a_list.append(“Monty”)

● >>> a_list.append(“Python”)

● >>> del(a_list[1])

● >>> a_list

● >>> a_list[1:3]

● >>> a_list[2:3]

DICTIONARY

● Key-Value pairs

● >>> Contact_list = {“John Travolta”: 478901245, “Tom
Javolta”: 23423423}

● >>> Contact_list[“Tom Javolta”]

● >>> Contact_list[“Simon Diaz”] = 2345345122

● >>> Contact_list

DICTIONARY

● >>> Contact_list.keys()

● >>> Contact_list.values()

● >>> Contact_list.clear()

● >>> Contact_list

MATH OPERATORS

● >>> 1 + 2

● >>> 4 / 2

● >>> 11 % 2

MATH OPERATORS

● >>> [“ha”] * 3

● >>> [34, 12] + [11]

LOGIC OPERATORS

● and, or, not

● <, >, <=, >=

● ==, !=

● Booleans: True, False

LOGIC OPERATORS

● >>> “Pizzahut” > “Domino’s Pizza”

● >>> [1, 2, 3] > [1, 1, 1]

STRINGS

● “This is a string”, ‘This is also a string!’

● >>> sentence = “I am Liam”

● >>> sentence[2]

● >>> sentence[5:9]

STRINGS

● >>> “Mark” == “Marc”

● >>> “Mark” != “Marc”

● >>> long_sentence = “I believe this will be the longest
sentence you have to type during this workshop.”

● >>> len(long_sentence)

● >>> “z” in long_sentence

STRINGS

● >>> “la” * 3

● >>> “Info” + “groep”

FUNCTIONS

● Work with code blocks: TAB->

● >>> def hello(name):

... print(“Hello, ” + name)

CONTROL FLOW

>>> if(1 < 4):

... print(“Alright!”)

CONTROL FLOW

>>> if(42 < 4):

print(“Alright!”)

 else:

print(“Error!”)

CONTROL FLOW

>>> if(42 < 4):

print(“Alright!”)

 elif(3 + 2 =! 4):

print(“Good job!”)

 else:

print(“Error!”)

LOOPS

>>> n = 0

>>> while(n <= 30):

print(“Iteration ” + str(n))

n = n+1

LOOPS

>>> for number in range(42):

print(number)

BREAK

● Stop a loop from being executed

● >>> for number in range(42):

if (number > 23):
break

else:
print(number)

PASS

● Null operator, replacing code to be written

● >>> if True:

pass

print(“You... shall not... pass!!!”)

COMMENTS

● # This will be a comment

● ‘’’ And all of this

 will also be

 a comment ‘’’

EXECUTE PYTHON FILE

python file.py

INPUT

x = input('Enter your name: ')

print('Hello, ' + x)

CLASSES

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def myfunc(self):

 print("Hello my name is " + self.name)

CLASSES

print(p1.name)

print(p1.age)

p1.myfunc()

PIP

● Python Package Manager

● Install libraries globally or local in python environment

● pip

● pip list

PIP

● Install multiple libraries with require file

● pip install -r requirements.txt

IMPORT

● pip install pygame

● Open text editor

IMPORT

import pygame

pygame.init()

width = 350

height = 200

#make the pygame window

pygame.display.set_mode((width, height))

running = True

while (running):

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 running = False

WEATHER SERVER

● requirements.txt

flask

weather-api

WEATHER SERVER

● run_server.sh

FLASK_APP=server.py flask run

WEATHER SERVER
● forecast.py

from weather import Weather, Unit

weather = Weather(unit=Unit.CELSIUS)

city = "Borchtlombeek city"

location = weather.lookup_by_location(city)

forecasts = location.forecast

text = "Today, "

forecast = forecasts[0]

text = text + forecast.date + ", the weather in " + city + " is " +
forecast.text + ", with max " + forecast.high + "°C and min " + forecast.low +
"°C."

WEATHER SERVER
● server.py

from flask import Flask

import forecast as f

app = Flask(__name__)

@app.route("/")

def hello():

 return f.text

ANY QUESTIONS?

...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

