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REQUIREMENTS

● Python 3.X
● CMD or BASH
● Text editor



  

DURING THE WORKSHOP

● Execute “>>>” statements
● QUESTION? ==> ASK
● Slides available at seminars.infogroep.be



  AFTER THE WORKSHOP...



  

BACKGROUND

● Dynamic language

● Object Oriented

● Runs on Python Virtual Machine

● Easy to use, reads like english



  

USE CASES

● Big data analysis

● Machine learning

● Prototyping

● Introduction to writing code



  

FIRST PROGRAM

● Open Python with command python in prompt

● After “>>>”, type: 

print(“Hello World!”)
● Hit enter



  

TWO VERSIONS?

PYTHON 2.X
● Older version

● Small syntax differences

● Unfortunately, still widely used

print ”Hello World!”

PYTHON 3.X
● Newer version

● Syntax compatible with version 2 in 
most cases

● Conversion via 2to3

● F  A  S  T  E  R 

print(”Hello World!”)



  

ANYONE STILL VERSION 2!?



  

GOOD JOB



  

VARIABLES

● >>> x = 5

● No type mention needed, can be deducted from statement

● >>> a = b = c = 42

● >>> spam = “eggs” 

● >>> foo = False



  

TYPES

● >>> variable = 4.36 

● >>> type(variable)

● 5 standard types in python

● Number(Int, Float, ...), String, List, Tuple, Dictionary

● Find all methods of type/object: dir

● >>> dir(“Testje”)



  

DATASTRUCTURES

● Tuple

● List

● Dictionary

● ...



  

TUPLE

● Immutable

● ( )

● >>> a_tuple = (1, 2, 3)

● >>> a_tuple[0]

● >>> a_tuple[0] = “eggs”

● >>> a_tuple



  

LIST

● Mutable

● [ ]

● >>> a_list = [1, 2, 3]

● >>> a_list[0]

● >>> a_list[0] = “eggs”

● >>> a_list



  

LIST

● >>> a_list.append(“Monty”)

● >>> a_list.append(“Python”)

● >>> del(a_list[1])

● >>> a_list

● >>> a_list[1:3]

● >>> a_list[2:3]



  

DICTIONARY

● Key-Value pairs

● >>> Contact_list = {“John Travolta”: 478901245, “Tom 
Javolta”: 23423423}

● >>> Contact_list[“Tom Javolta”]

● >>> Contact_list[“Simon Diaz”] = 2345345122

● >>> Contact_list



  

DICTIONARY

● >>> Contact_list.keys()

● >>> Contact_list.values()

● >>> Contact_list.clear()

● >>> Contact_list



  

MATH OPERATORS

● >>> 1 + 2

● >>> 4 / 2

● >>> 11 % 2



  

MATH OPERATORS

● >>> [“ha”] * 3

● >>> [34, 12] + [11]



  

LOGIC OPERATORS

● and, or, not

● <, >, <=, >=

● ==, !=

● Booleans: True, False



  

LOGIC OPERATORS

● >>> “Pizzahut” > “Domino’s Pizza”

● >>> [1, 2, 3] > [1, 1, 1]



  

STRINGS

● “This is a string”, ‘This is also a string!’

● >>> sentence = “I am Liam”

● >>> sentence[2]

● >>> sentence[5:9]



  

STRINGS

● >>> “Mark” == “Marc”

● >>> “Mark” != “Marc”

● >>> long_sentence = “I believe this will be the longest 
sentence you have to type during this workshop.”

● >>> len(long_sentence)

● >>> “z” in long_sentence



  

STRINGS

● >>> “la” * 3

● >>> “Info” + “groep”



  

FUNCTIONS

● Work with code blocks: TAB->

● >>> def hello(name):

... print(“Hello, ” + name)



  

CONTROL FLOW

>>> if(1 < 4):

... print(“Alright!”) 



  

CONTROL FLOW

>>> if(42 < 4):

print(“Alright!”)

 else:

print(“Error!”) 



  

CONTROL FLOW

>>> if(42 < 4):

print(“Alright!”)

 elif(3 + 2 =! 4):

print(“Good job!”)

 else:

print(“Error!”)  



  

LOOPS

>>> n = 0

>>> while(n <= 30):

print(“Iteration ” + str(n))

n = n+1



  

LOOPS

>>> for number in range(42):

print(number)



  

BREAK

● Stop a loop from being executed

● >>> for number in range(42):

if (number > 23):
break

else:
print(number)



  

PASS

● Null operator, replacing code to be written

● >>> if True:

pass

print(“You... shall not... pass!!!”)



  

COMMENTS

● # This will be a comment

● ‘’’ And all of this

 will also be

 a comment ‘’’



  

EXECUTE PYTHON FILE

python file.py



  

INPUT

x = input('Enter your name: ')

print('Hello, ' + x)



  

CLASSES

class Person:

  def __init__(self, name, age):

    self.name = name

    self.age = age

  def myfunc(self):

    print("Hello my name is " + self.name)



  

CLASSES

print(p1.name)

print(p1.age)

p1.myfunc()



  

PIP

● Python Package Manager

● Install libraries globally or local in python environment

● pip

● pip list



  

PIP

● Install multiple libraries with require file

● pip install -r requirements.txt



  

IMPORT

● pip install pygame

● Open text editor



  

IMPORT

import pygame

pygame.init()

width = 350

height = 200

 

#make the pygame window

pygame.display.set_mode((width, height ) )

 

running = True

 

while (running):

        for event in pygame.event.get():

            if event.type == pygame.QUIT:

                running = False



  

WEATHER SERVER

● requirements.txt

flask

weather-api



  

WEATHER SERVER

● run_server.sh

FLASK_APP=server.py flask run



  

WEATHER SERVER
● forecast.py

from weather import Weather, Unit

weather = Weather(unit=Unit.CELSIUS)

city = "Borchtlombeek city"

location = weather.lookup_by_location(city)

forecasts = location.forecast

text = "Today, "

forecast = forecasts[0]

text = text + forecast.date + ", the weather in " + city +  " is " + 
forecast.text + ", with max " + forecast.high + "°C and min " + forecast.low + 
"°C." 



  

WEATHER SERVER
● server.py

from flask import Flask

import forecast as f

app = Flask(__name__)

@app.route("/")

def hello():

    return f.text



  

ANY QUESTIONS?

...
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