
git seminar
Introduction to the version control system

Slides can be found here: https://docs.google.com/presentation/d/1qgy7gSw67iQur3NkBK-XyUQnXlUZXgsdHu1tLr3y7L0/edit#slide=id.p

https://docs.google.com/presentation/d/1qgy7gSw67iQur3NkBK-XyUQnXlUZXgsdHu1tLr3y7L0/edit#slide=id.p

Preface

● Robbe De Greef
● robbe@infogroep.be
● discord.infogroep.be
● Slides will be available on seminars.infogroep.be
● Questions? Just ask

mailto:robbe@infogroep.be
https://discord.infogroep.be

What is git

● Distributed version control system
● Created by Linus Torvalds, for Linux
● Keeps track of your project

○ History of changes
○ Data integrity

● Makes collaboration easy

Linux was ‘just’ a
reimplementation of Unix. Git
proved I could be more than a

one-hit wonder.

Concept of branches

git works on the concept of branches

● There is always at least one branch
○ main / master (master is not often used anymore)

● You can make changes on a different branch
● Merge branches
● Try out different things on different branches

Installation

Intermezzo: GitHub

● Most used git sharing platform
● Social media for developers
● Find repos, work together, brag

about yourself
● others:

○ gitlab
○ gitea
○ …

Installing git

Linux

● `sudo apt update && sudo apt install git`
● `sudo pacman -Syu git`

Windows

● https://gitforwindows.org/ (actually git might already be installed these days)

MacOS

● https://git-scm.com/downloads/mac (probably already installed)

Useful link: https://github.com/git-guides/install-git

https://gitforwindows.org/
https://git-scm.com/downloads/mac
https://github.com/git-guides/install-git

Creating github account

● https://github.com/
● Go to sign up
● Do your thing

https://github.com/

Intermezzo: SSH keys

Authentication with SSH (Secure SHell) server

● Username/password
● SSH keys

○ “dude trust me, its me”

They come in pairs

● Public key - you give this to the server
● Private key - you keep this to yourself

Intermezzo: SSH keys

Generating your own SSH key

● `ssh-keygen -t ed25519 -C "your_email@example.com"`
● `eval "$(ssh-agent -s)"`
● `ssh-add ~/.ssh/id_ed25519`

Setting your username / email

● `git config -–global user.name "Your username"`
● `git config –global user.email "Your email"

Useful link:
https://docs.github.com/en/authentication/connectin
g-to-github-with-ssh/generating-a-new-ssh-key-and

-adding-it-to-the-ssh-agent

tip:
You can override these per repository. This can be
useful if you want to work under a different name /
email. Such as for school.
Just run these commands without the –global flag

mailto:your_email@example.com
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

Adding SSH key to GitHub

GitHub only allows communication via SSH key

● Copy output of public key
○ `cat ~/.ssh/id_e25519.pub`

● Go to Settings > SSH and GPG keys > New SSH key
● Add contents of public key here
● Give it a name and save

Using git

Creating a new repo

Creating a new repo is very easy, GitHub
tells you how to do it

● First create folder for your project
○ `mkdir your-repo`
○ `cd your-repo`

● Then setup git
○ `git init` - initializes git in the folder
○ `git branch -M main` - create main branch

and switch to it
○ `git remote add origin <your repo>` - add

upstream remote
● You are done

git workflow

Files go through multiple stages in a typical git workflow

● untracked - files are not tracked by the git system
● changed - files are tracked by the git system and have been changed since

the last commit
● staged - files are “ready to be committed”
● Committed - files have been committed in git, they are up to date with gits

database

First commit

Once git is initialized, we can add files to the system

● Create file README.md
○ `vim README.md`
○ Add some information about your project

● Add file to staged files
○ `git add README.md`

● Commit all staged files
○ `git commit -m “First commit”`

● Push all commits to the remote git server
○ `git push -u origin main`

tip:
You can just write `git commit` to get a editor in
which you can write the commit message

Syncing with the remote

Pushing code to a remote

● `git push -u origin main` -
○ Push code and set the upstream to the origin/main branch

● `git push`
○ Once the upstream has been set, this is a shorthand that pushes the code into the remote

● `git push --force`
○ [DANGEROUS] pushes code and overwrites the remote branch with your local code

Syncing with the remote

Pulling code from a remote

● `git pull`
○ Fetches changes from remote and applies them

● `git fetch`
○ Fetches changes from remote but does not apply them

● `git reset --hard origin/<branch>`
○ [DANGEROUS] remove all your local changes and reset your local code with the remote

branch

Merging code

Merging code from one branch into the other

● `git merge <other-branch>`
○ Merge code from the other-branch into the current branch you are in

Main

other
branch

Main

This is the
merge

After
merge

Rebasing onto branch

Rebase one branch on top of another branch

● `git rebase <other-branch>`
○ Rebase your current branch on top of the other branch

Main

other
branch

After
rebase

Main

other
branch

Working with branches

● `git checkout <branch>`
○ Set the given branch as the current branch you are working on

● `git checkout -b <branch>`
○ Create a new branch called <branch> and switch to it

● `git branch`
○ List all existing branches

● `git branch -d <branch>`
○ Delete an existing branch (locally)

● `git branch -m <new-name>`
○ Rename branch locally

.gitignore

File that specifies which files git has to ignore

● You can use wildcards `*`
○ To ignore all files of a certain type. e.g. `*.pyc` ignores all Python bytecode files

● You can list files you want to keep for yourself

Contributing to an existing repo

Clone an existing repository

● `git clone <repo>`

We are going to work on

● https://github.com/RobbeDGreef/git-seminar

So please clone this repo

tip:
Sometimes for large project, git submodules are
used. These are references to other git repos
inside the project. You often need to clone them
too to build the project. This can be done with
`git clone --recurse-submodules`

https://github.com/RobbeDGreef/git-seminar

Contributing to an existing repo - forking

The typical workflow for contributing goes as follows:

- You fork the repo
- You make your own changes
- You create a pull request
- That pull request is then merged or rejected

tip:
Sometimes a pull request is also called a
merge request

Fork the repo

● Press the fork button
● Click create fork

